Preparation and Characterization of MgMnO₃ and ZnMnO₃

B. L. CHAMBERLAND[†], A. W. SLEIGHT, AND J. F. WEIHER

Central Research Department,[‡] E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898

Received September 8, 1969

Two new ilmenites of tetravalent manganese have been prepared at high pressures: MgMnO₃: a = 4.945 Å, c = 13.73 Å; and ZnMnO₃: a = 4.965 Å, c = 13.80 Å. The compounds were found to be antiferromagnetic, and MgMnO₃ possessed semiconducting electrical properties.

Introduction

Ilmenite-type compounds of formula $AMn^{IV}O_3$ have been reported where A is Ni (1), (2) and Co (2). These particular compositions are ferrimagnetic and semiconducting (2), (3). Other compounds where A is Ca, Ba, or Sr have been found to possess the cubic perovskite structure or a closely related hexagonal layer-type structure (4-6).

The objective of this work was to prepare and characterize other possible $AMn^{IV}O_3$ compositions having the ilmenite-type structure.

Experimental

The reactants were reagent grade or better. Manganese dioxide was prepared by the thermal decomposition of $Mn(NO_3)_2 \cdot 6H_2O$ in oxygen at 500°C. MgMnO₃ was prepared either by the hydrothermal reaction of MgCl₂ $\cdot 6H_2O$, Li₂MnO₃, and KClO₃ or by the solid state reaction of MgO and MnO₂ at high pressure. Pure ZnMnO₃ was formed by the high-pressure reaction of ZnO and MnO₂ mixtures containing small amounts of KClO₃.

Hydrothermal reactions were carried out in collapsible gold ampoules held at 700°C and 3000 atm for about six hours. High-pressure experiments were performed in a tetrahedral anvil press (7) at 900–1000°C and 65 kbars in platinum or gold capsules.

X-ray powder patterns were obtained on the ilmenite products at 25°C with a Hägg-Guinier camera using strictly monochromatic CuK α_1 radiation and an internal standard of KCl (a = 6.2931 Å). The cell dimensions were refined by least squares.

† Present address: Department of Chemistry, University of Connecticut, Storrs, Connecticut.

‡ Contribution No. 1610.

Electrical resistivities were measured on single crystals of $MgMnO_3$ by the conventional four-probe method (7). Magnetic susceptibility data were obtained on powdered samples of the ilmenites by the Faraday method using a Cahn RG micrc-balance (4).

Differential thermal and thermogravimetric analyses were performed on a Du Pont 900 thermal analyzer.

Results

Analytical and crystallographic data on MgMnO₃ and ZnMnO₃ are presented in Table I. The magnetic susceptibility results are shown in Fig. 1.

MgMnO₃

This compound was isolated with the ilmenitetype structure whether prepared hydrothermally or at high pressure. Attempts to prepare MgMnO₃ at atmospheric pressure produced a cubic phase that was found to be oxygen deficient with the approximate composition MgMnO_{2.9}. Differential thermal analysis on pure MgMnO₃ indicated decomposition at 580°C with the loss of small amounts of oxygen. The residue from the dta experiment was found to be identical to the MgMnO_{2.9} phase obtained from reactions carried out at 600–1000°C in 1 atm of O₂.

Electrical resistivity data showed semiconducting behavior in the region 4.2–298°K. The activation energy was 1 eV, and the room-temperature resistivity was approximately 10° Ω cm.

The slope of the line for MgMnO₃ in Fig. 1 indicates an effective moment of 3.48 μ B per Mn, and the intercept of this line, θ , is -36°K. Although no well-defined Néel temperature was observed, departure from Curie-Weiss behavior begins at about 40°K. TABLE I

	Hexagonal Cell Dimensions		Analytical Results			
Compound	a (Å)	c (Å)	% A	% Mn	%0	
MgMnO ₃	4.945	13.73	18.9(19.1)ª	42.7(43.2)	37.8(37.7)	

^a Numbers in parentheses denote theoretical values for the given composition.

FIG. 1. Magnetic susceptibility data from $MgMnO_3$ (circles) and $ZnMnO_3$ (triangles).

ZnMnO₃

The zinc derivative could only be prepared at 65 kbars and 900°C. Attempts to prepare an ilmenite phase at atmospheric or 3 kbars yielded only spinel phases. From the data shown in Fig. 1, ZnMnO₃ has an effective moment of 3.90 μ B, a θ of +6°K, and a Néel temperature of 18°K.

Discussion

Ilmenite-type compounds of the formula ABO₃ are well-known where the B ion is Ti^{4+} . The A cation for the titanate ilmenites includes Mg, Fe, Ni, Co, Mn, Cd, and Zn (8), (9). All these com-

		MgMnO ₃			ZnMnO ₃		
h k l	ļ	d _(obs)	d _(calc)	I/I _o	d _(obs)	d _(calc)	<i>I</i> / <i>I</i> ₀
00	3	4.5775	4.5769	40	_		
10	1	4.0892	4.0884	20	4.1062	4.1059	5
01	2	3.6335	3.6336	35	3.6511	3.6501	50
10	4	2.6778	2.6785	80	2.6919	2.6918	85
11	0	2.4725	2.4726	80	2.4830	2.4828	100
01	5	2.3106	2.3117	5	2.3234	3.3236	20
00	6				2.3007	2.3011	5
11	3	2.1752	2.1754	80	2.1848	2.1851	30
02	1				2.1241	2.1246	5
20	2				2.0528	2.0529	5
02	4	—			1.8248	1.8250	45
1.0	7		—		1.7920	1.7928	5
20	5				1.6963	1.6965	10
11	6	1.6795	1.6795	100	1.6876	1.6877	40
21	1	1.6083	1.6076	5	1.6150	1.6143	2
21	4	1.4641	1.4641	40	1.4705	1.4705	40
30	0	1.4276	1.4276	50	1.4336	1.4335	60
12	5	1.3949	1.3945	5	1.4013	1.4008	5
20	8				1.3460	1.3459	5
03	3	1.3642	1.3628	20	—		
10	10	1.3076	1.3075	20	1.3145	1.3146	10
11	9	1.2985	1.2984	20	1.3053	1.3050	15
22	0	1.2364	1.2363	10			

TABLE II CRYSTALLOGRAPHIC DATA FOR MgMnO3 AND ZnMnO3

positions can be prepared at atmospheric pressure. Other ilmenite compounds possessing the ABO₃ formula have to be prepared under special conditions. MgSnO₃, CdSnO₃, and NiMnO₃ have been reported (10)-(12) by the low-temperature decomposition of mixed metal hydroxides, oxalates, or carbonates. Ilmenites of the type CuVO₃, MgGeO₃, ZnGeO₃, MnGeO₃, and CoMnO₃ have only been prepared (13)-(17) under high pressure conditions.

It has been shown that MgMnO₃ can be prepared at 3000 atm, but ZnMnO₃ was only made at 65 kbars. Zn^{2+} normally prefers tetrahedral coordination but has been found to exist in octahedral coordination especially in compounds prepared at high pressure. Both divalent ions, Mg^{2+} and Zn^{2+} , are found in octahedral sites in the titanate ilmenites.

The crystallographic data (Table II) show the ilmenite ordering lines, and the indices are consistent with the rhombohedral absence rule -h + k + l = 3n and the space group $R\overline{3}$.

The magnetic data for both ZnMnO₃ and MgMnO₃ show an observed μ_{eff} close to that for Mn^{4+} free-spin value of 3.88 μ B. The slight deviation from the theoretical value can be accounted for by possible disordering of A and B sites in the ilmenite structure. This defect would create near neighbor $Mn^{4+}-O-Mn^{4+}$ linkages along the c axis which would affect the moment. The amount of disorder could be quite small to account for the slight deviation. Another possible reason for the observed decreased moment in MgMnO₃ could be the spinorbit coupling that tends to lower the moments in some tetravalent manganese derivatives. These two ilmenites are the first examples in which the magnetic moment originates only from the transition metal **B**⁴⁺ ion.

References

- 1. E.F. BERTAUT AND F. FORRAT, J. Appl. Phys. 29, 247 (1958).
- T. J. SWOBODA, R. C. TOOLE, AND J. D. VAUGHAN, J. Phys. Chem. Solids 5, 293 (1958).
- 3. W. H. CLOUD, Phys. Rev. 111, 1046 (1958).
- B. L. CHAMBERLAND, A. W. SLEIGHT, AND J. F. WEIHER J. Solid State Chem. 1, 506 (1970).
- Y. SYONO, S. AKIMOTO, AND K. KOHN, J. Phys. Soc. Japan 26, 993 (1969).
- 6. A. HARDY, Acta Cryst. 15, 179 (1962).
- T. A. BITHER, J. L. GILLSON, AND H. S. YOUNG, *Inorg. Chem.* 5, 1559 (1966).
- R. W. G. WYKOFF, "Crystal Structures," 2nd ed. Vol. 2, pp. 420–422, Interscience Publishers, Inc., New York, 1960.
- 9. S. F. BARTRAM AND R. A. SLEPETYS, J. Amer. Ceram. Soc. 44, 493 (1961).
- C. LEVY-CLÉMENT, I. MORGENSTERN-BADARAN, Y. BILLIET, AND A. MICHEL, Compt. Rend. 265C, 585 (1967).
- 11. I. MORGENSTERN-BADARAN, P. POIX, AND A. MICHEL, Compt. Rend. 256, 692 (1963).
- 12. T. J. SWOBODA, U.S. Patent 3,039,965, 1962.
- 13. B. L. CHAMBERLAND, J. Solid State Chem. 1, 138 (1969).
- 14. A. E. RINGWOOD AND M. SEABROOK, J. Geophys. Res. 67, 1690 (1962).
- 15. A. E. RINGWOOD AND A. MAJOR, Nature 215, 1367 (1967).
- 16. A. E. RINGWOOD AND M. SEABROOK, Nature 196, 883 (1962).
- 17. R. C. TOOLE, U.S. Patent 2,770,523, 1956.